Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Transl Sci ; 16(10): 1842-1855, 2023 10.
Article in English | MEDLINE | ID: mdl-37466279

ABSTRACT

Rapid and robust strategies to evaluate the efficacy and effectiveness of novel and existing pharmacotherapeutic interventions (repurposed treatments) in future pandemics are required. Observational "real-world studies" (RWS) can report more quickly than randomized controlled trials (RCTs) and would have value were they to yield reliable results. Both RCTs and RWS were deployed during the coronavirus disease 2019 (COVID-19) pandemic. Comparing results between them offers a unique opportunity to determine the potential value and contribution of each. A learning review of these parallel evidence channels in COVID-19, based on quantitative modeling, can help improve speed and reliability in the evaluation of repurposed therapeutics in a future pandemic. Analysis of all-cause mortality data from 249 observational RWS and RCTs across eight treatment regimens for COVID-19 showed that RWS yield more heterogeneous results, and generally overestimate the effect size subsequently seen in RCTs. This is explained in part by a few study factors: the presence of RWS that are imbalanced for age, gender, and disease severity, and those reporting mortality at 2 weeks or less. Smaller studies of either type contributed negligibly. Analysis of evidence generated sequentially during the pandemic indicated that larger RCTs drive our ability to make conclusive decisions regarding clinical benefit of each treatment, with limited inference drawn from RWS. These results suggest that when evaluating therapies in future pandemics, (1) large RCTs, especially platform studies, be deployed early; (2) any RWS should be large and should have adequate matching of known confounders and long follow-up; (3) reporting standards and data standards for primary endpoints, explanatory factors, and key subgroups should be improved; in addition, (4) appropriate incentives should be in place to enable access to patient-level data; and (5) an overall aggregate view of all available results should be available at any given time.


Subject(s)
COVID-19 , Humans , Infant, Newborn , Pandemics , Randomized Controlled Trials as Topic , Research , Male , Female
2.
Contemp Clin Trials ; 132: 107292, 2023 09.
Article in English | MEDLINE | ID: mdl-37454729

ABSTRACT

BACKGROUND: In response to the COVID-19 global pandemic, multiple platform trials were initiated to accelerate evidence generation of potential therapeutic interventions. Given a rapidly evolving and dynamic pandemic, platform trials have a key advantage over traditional randomized trials: multiple interventions can be investigated under a master protocol sharing a common infrastructure. METHODS: This paper focuses on nine platform trials that were instrumental in advancing care in COVID-19 in the hospital and community setting. A semi-structured qualitative interview was conducted with the principal investigators and lead statisticians of these trials. Information from the interviews and public sources were tabulated and summarized across trials, and recommendations for best practice for the next health crisis are provided. RESULTS: Based on the information gathered takeaways were identified as 1) the existence of some aspect of trial design or conduct (e.g., existing network of investigators or colleagues, infrastructure for data capture and relevant statistical expertise) was a key success factor; 2) the choice of treatments (e.g., repurposed drugs) had major impact on the trials as did the choice of primary endpoint; and 3) the lack of coordination across trials was flagged as an area for improvement. CONCLUSION: These trials deployed during the COVID-19 pandemic demonstrate how to achieve both speed and quality of evidence generation regarding clinical benefit (or not) of existing therapies to treat new pathogens in a pandemic setting. As a group, these trials identified treatments that worked, and many that did not, in a matter of months.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2
3.
Lancet Digit Health ; 4(10): e748-e756, 2022 10.
Article in English | MEDLINE | ID: mdl-36150783

ABSTRACT

Routine health care and research have been profoundly influenced by digital-health technologies. These technologies range from primary data collection in electronic health records (EHRs) and administrative claims to web-based artificial-intelligence-driven analyses. There has been increased use of such health technologies during the COVID-19 pandemic, driven in part by the availability of these data. In some cases, this has resulted in profound and potentially long-lasting positive effects on medical research and routine health-care delivery. In other cases, high profile shortcomings have been evident, potentially attenuating the effect of-or representing a decreased appetite for-digital-health transformation. In this Series paper, we provide an overview of how facets of health technologies in routinely collected medical data (including EHRs and digital data sharing) have been used for COVID-19 research and tracking, and how these technologies might influence future pandemics and health-care research. We explore the strengths and weaknesses of digital-health research during the COVID-19 pandemic and discuss how learnings from COVID-19 might translate into new approaches in a post-pandemic era.


Subject(s)
COVID-19 , Pandemics , Artificial Intelligence , COVID-19/epidemiology , Delivery of Health Care , Digital Technology , Humans
4.
JCO Precis Oncol ; 6: e2100372, 2022 08.
Article in English | MEDLINE | ID: mdl-35952319

ABSTRACT

PURPOSE: As immune checkpoint inhibitors (ICI) become increasingly used in frontline settings, identifying early indicators of response is needed. Recent studies suggest a role for circulating tumor DNA (ctDNA) in monitoring response to ICI, but uncertainty exists in the generalizability of these studies. Here, the role of ctDNA for monitoring response to ICI is assessed through a standardized approach by assessing clinical trial data from five independent studies. PATIENTS AND METHODS: Patient-level clinical and ctDNA data were pooled and harmonized from 200 patients across five independent clinical trials investigating the treatment of patients with non-small-cell lung cancer with programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1)-directed monotherapy or in combination with chemotherapy. CtDNA levels were measured using different ctDNA assays across the studies. Maximum variant allele frequencies were calculated using all somatic tumor-derived variants in each unique patient sample to correlate ctDNA changes with overall survival (OS) and progression-free survival (PFS). RESULTS: We observed strong associations between reductions in ctDNA levels from on-treatment liquid biopsies with improved OS (OS; hazard ratio, 2.28; 95% CI, 1.62 to 3.20; P < .001) and PFS (PFS; hazard ratio 1.76; 95% CI, 1.31 to 2.36; P < .001). Changes in the maximum variant allele frequencies ctDNA values showed strong association across different outcomes. CONCLUSION: In this pooled analysis of five independent clinical trials, consistent and robust associations between reductions in ctDNA and outcomes were found across multiple end points assessed in patients with non-small-cell lung cancer treated with an ICI. Additional tumor types, stages, and drug classes should be included in future analyses to further validate this. CtDNA may serve as an important tool in clinical development and an early indicator of treatment benefit.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Circulating Tumor DNA/genetics , Clinical Trials as Topic , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Prognosis
5.
Ther Innov Regul Sci ; 55(4): 866-871, 2021 07.
Article in English | MEDLINE | ID: mdl-33886112

ABSTRACT

Every medical product requires additional study even after regulatory approval. We highlight several lines of enquiry to advance our understanding of COVID19 vaccines post authorization: identifying key population segments warranting more study, assessment of efficacy, and of safety data, harmonization of data relating to immune response and developing mechanisms for data and knowledge sharing across countries. We show how innovative trial designs and sources from real world data play a critical role in generating evidence.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2
6.
Lancet Digit Health ; 3(4): e260-e265, 2021 04.
Article in English | MEDLINE | ID: mdl-33678589

ABSTRACT

Data-driven digital health technologies have the power to transform health care. If these tools could be sustainably delivered at scale, they might have the potential to provide everyone, everywhere, with equitable access to expert-level care, narrowing the global health and wellbeing gap. Conversely, it is highly possible that these transformative technologies could exacerbate existing health-care inequalities instead. In this Viewpoint, we describe the problem of health data poverty: the inability for individuals, groups, or populations to benefit from a discovery or innovation due to a scarcity of data that are adequately representative. We assert that health data poverty is a threat to global health that could prevent the benefits of data-driven digital health technologies from being more widely realised and might even lead to them causing harm. We argue that the time to act is now to avoid creating a digital health divide that exacerbates existing health-care inequalities and to ensure that no one is left behind in the digital era.


Subject(s)
Biomedical Technology/standards , Datasets as Topic/standards , Diffusion of Innovation , Digital Technology/standards , Healthcare Disparities , Humans
8.
Heart ; 103(15): 1156-1162, 2017 08.
Article in English | MEDLINE | ID: mdl-28455296

ABSTRACT

Controlled trials provide the most valid determination of the efficacy and safety of an intervention, but large cardiovascular clinical trials have become extremely costly and complex, making it difficult to study many important clinical questions. A critical question, and the main objective of this review, is how trials might be simplified while maintaining randomisation to preserve scientific integrity and unbiased efficacy assessments. Experience with alternative approaches is accumulating, specifically with registry-based randomised controlled trials that make use of data already collected. This approach addresses bias concerns while still capitalising on the benefits and efficiencies of a registry. Several completed or ongoing trials illustrate the feasibility of using registry-based controlled trials to answer important questions relevant to daily clinical practice. Randomised trials within healthcare organisation databases may also represent streamlined solutions for some types of investigations, although data quality (endpoint assessment) is likely to be a greater concern in those settings. These approaches are not without challenges, and issues pertaining to informed consent, blinding, data quality and regulatory standards remain to be fully explored. Collaboration among stakeholders is necessary to achieve standards for data management and analysis, to validate large data sources for use in randomised trials, and to re-evaluate ethical standards to encourage research while also ensuring that patients are protected. The rapidly evolving efforts to streamline cardiovascular clinical trials have the potential to lead to major advances in promoting better care and outcomes for patients with cardiovascular disease.


Subject(s)
Cardiovascular Diseases/therapy , Clinical Trials as Topic/organization & administration , Informed Consent , Societies, Medical , Databases, Factual , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...